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Abstract

The relative response factor (RRF) of an electron-capture detection (ECD) system is predicted for a set of 118 polychlorinated biphenyls
(PCBs). Due to the wide range of relative retention times of PCB congeners, the RRFs of these compounds were calculated based on two
different internal standards. Therefore, the compounds were divided into two molecular subsets. As a first step, multiple linear regression
(MLR) was employed to find informative descriptors that can predict the RRFs of these compounds. Two descriptors of molecular ion
ionization potential (MIIP) and ionization potential of the molecule (IP) that are related to affinity of the compounds for the electrons show the
highest mean effects in subsets 1 and 2, respectively. The descriptors appearing in the MLR models were considered as inputs for developing
the back-propagation artificial neural networks (BP-ANN). Two networks with the architectures of 5-5-1 and 7-6-1 were generated for the
prediction of RRFs of molecules of subsets 1 and 2, respectively. Comparison of the results indicates the superiority of neural networks
over that of the MLR method indicating the nonlinear behaviors of the ECD system. Inspection of the models reveals that the surface of the
molecules play different roles in response factors of two subsets due to rotation of one phenyl group with respect to the other for the subset
consisting of larger number of chlorine atoms.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Polychlorinated biphenyls (PCBs) are comprised of 209
distinct chlorine-substituted biphenyl structures (congeners).
Each congener may have between 1 and 10 chlorine atoms,
which may be located at various positions on the two linked
benzene rings. The physical and chemical properties of each
congener vary according to the number and position of the
substituted chlorine atoms in the compounds. The disper-
sion of these PCB congeners by uncontrolled releases into
the environment, their long-term stability, their lipophilic-
ity resulting in bio-magnification up food chains, and ques-
tions of possible toxicity, together causes concern for their
effects on the environment and have engendered a vast body
of research over the past three decades[1–3]. The measure-
ment of the large number of PCB congeners in commercial
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or environmentally altered PCB mixtures requires the use
of high resolution gas chromatography with sensitive and
selective detection system such as electron-capture detec-
tion (ECD) or selected-ion monitoring mass spectrometry
(MS-SIM) [4–8].

The development of sensitive and selective detectors has
played a major role in the establishment of chromatography
as an unrivaled analytical tool. The retention time can be
used for identification of compounds, but it is well accepted
that more than one compound can have a similar retention
time. However, different detector responses can be used for
peak identification of compounds with the same retention
time. On the other hand, the response factor (RF) is the fun-
damental measure of the response of the detector to a given
compound and can be considered as a correlation factor.
Since numerous compounds are unavailable as standards,
the development of a theoretical method for estimating
response factor seems to be useful. The first work on the
prediction of response factors of substituted benzenes and
pyridines, was published by Katritzky and Gordeeva[9]
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using a multivariate statistical partial least-squares (PLS)
method. Also, Katritzky and coworkers applied the mul-
tiple linear and nonlinear regression methods to predict
the retention time and response factor of different organic
compounds[10,11]. Jalali-Heravi and coworkers have used
artificial neural networks for predicting flame ionization
detection (FID), thermal conductivity detection (TCD) and
photoionization detection (PID) response factors for differ-
ent series of organic molecules[12–14].

The main aim of the present work was the development
of a quantitative structure property relationship (QSPR) for
predicting relative response factors of PCB compounds ob-
tained using ECD detection system.

2. Methods

Artificial neural networks (ANNs) are mathematical sys-
tems that simulate biological neural networks[15–17]. They
consist of processing elements (nodes, neurons) organized in
layers. Back-propagation neural networks (BNNs) are most
often used in analytical applications. The back-propagation
network receives a set of inputs, which are multiplied by
each node and then a nonlinear transfer function is applied.
The goal of training the network is to change the weights be-
tween the layers in a direction to minimize the output errors.
The changes in the values of the weights can be obtained
usingEq. (1):

�Wij (n) = ηδiOj + α Wij (n − 1), (1)

where �Wij is the change in the weight factor for each
network node,δi the actual error of node i, andOj is output
of node j. The coefficientsη andα are the learning rate and
the momentum factor, respectively.

3. Experimental

3.1. Data set

ECD RRFs of different PCB congeners obtained at 300◦C
was taken from[18]. The data set includes those PCB con-
geners that produced non-coeluted and completely resolved
chromatographic peaks. Therefore, 118 out of 209 PCB
congeners were used in the data set (Table 1). Because
of the large scale of relative retention time of PCB con-
geners (almost 100 min), the relative response factors of
these compounds were calculated based on 4-bromobiphenyl
(<60 min retention time) and hexa-bromobiphenyl (>60 min
retention time) as the internal standards[18]. Hence, the
data set was divided into two molecular subsets on the ba-
sis of the type of the internal standard, which was used in
RRF calculations. The subsets 1 and 2 consist of 52 and 66
compounds, respectively. The training and prediction sets
for subsets 1 and 2 consist of 41 and 11, and 51 and 15
molecules, respectively. The training set for each subset was

Table 1
Compounds studied in this work

PCB no. Structure PCB no. Structure

Subset 1
1 2 44 2, 2′, 3, 5′
3 4 45a 2, 2′, 3, 6
4 2, 2′ 46 2, 2′, 3, 6′
6a 2, 3′ 48 2, 2′, 4, 5
7 2, 4 49 2, 2′, 4, 5′
8 2, 4′ 51 2, 2′, 4, 6′
12a 3, 4 52a 2, 2′, 5, 5′
13 3, 4′ 53 2, 2′, 5, 6′
15 4, 4′ 56 2, 3, 3′, 4′
16 2, 2′, 3 63 2, 3, 4′, 5
17 2, 2′, 4 66 2, 3′, 4, 4′
18a 2, 2′, 5 67 2, 3′, 4, 5
19 2, 2′, 6 70 2, 3′, 4′, 5
22 2, 3, 4′ 74a 2, 4, 4′, 5
24 2, 3, 6 84 2, 2′, 3, 3′, 6
25 2, 3′, 4 91 2, 2′, 3, 4′, 6
26a 2, 3′, 5 92 2, 2′, 3, 5, 5′
29a 2, 4, 5 95a 2, 2′, 3, 5′, 6
31 2, 4′, 5 96 2, 2′, 3, 6, 6′
33 2′, 3, 4 99 2, 2′, 4, 4′, 5
34 2′, 3, 5 100 2, 2′, 4, 4′, 6
35 3, 3′, 4 101 2, 2′, 4, 5, 5′
37 3, 4, 4′ 103 2, 2′, 4, 5′, 6
40 2, 2′, 3, 3′ 104a 2, 2′, 4, 6, 6′
41 2, 2′, 3, 4 113 2, 3, 3′, 5′, 6
42a 2, 2′, 3, 4′

Subset 2
77 3, 3′, 4, 4′ 167a 2, 3′, 4, 4′, 5, 5′
81 3, 4, 4′, 5 169 3, 3′, 4, 4′, 5, 5′
82 2, 2′, 3, 3′, 4 170 2, 2′, 3, 3′, 4, 4′, 5
83 2, 2′, 3, 3′, 5 171 2, 2′, 3, 3′, 4, 4′, 6
85a 2, 2′, 3, 4, 4′ 172 2, 2′, 3, 3′, 4, 5, 5′
87 2, 2′, 3, 4, 5′ 173 2, 2′, 3, 3′, 4, 5, 6
97 2, 2′, 3′, 4, 5 174a 2, 2′, 3, 3′, 4, 5, 6′
105a 2, 3, 3′, 4, 4′ 175 2, 2′, 3, 3′, 4, 5′, 6
107a 2, 3, 3′, 4′, 5 176 2, 2′, 3, 3′, 4, 6, 6′
110 2, 3, 3′, 4′, 6 177 2, 2′, 3, 3′, 4′, 5, 6
114 2, 3, 4, 4′, 5 178 2, 2′, 3, 3′, 5, 5′, 6
118 2, 3′, 4, 4′, 5 179 2, 2′, 3, 3′, 5, 6, 6′
119 2, 3′, 4, 4′, 6 180 2, 2′, 3, 4, 4′, 5, 5′
122 2′, 3, 3′, 4, 5 183a 2, 2′, 3, 4, 4′, 5′, 6
126 3, 3′, 4, 4′, 5 185a 2, 2′, 3, 4, 5, 5′, 6
128a 2, 2′, 3, 3′, 4, 4′ 187 2, 2′, 3, 4′, 5, 5′, 6
129 2, 2′, 3, 3′, 4, 5 189 2, 3, 3′, 4, 4′, 5, 5′
130a 2, 2′, 3, 3′, 4, 5′ 191a 2, 3, 3′, 4, 4′, 5′, 6
131 2, 2′, 3, 3′, 4, 6 193 2, 3, 3′, 4′, 5, 5′, 6
132 2, 2′, 3, 3′, 4, 6′ 194 2, 2′, 3, 3′, 4, 4′, 5, 5′
134 2, 2′, 3, 3′, 5, 6 195 2, 2′, 3, 3′, 4, 4′, 5, 6
135 2, 2′, 3, 3′, 5, 6′ 197 2, 2′, 3, 3′, 4, 4′, 6, 6′
136 2, 2′, 3, 3′, 6, 6′ 198 2, 2′, 3, 3′, 4, 5, 5′, 6
137 2, 2′, 3, 4, 4′, 5 199 2, 2′, 3, 3′, 4, 5, 5′, 6′
138 2, 2′, 3, 4, 4′, 5′ 200 2, 2′, 3, 3′, 4, 5, 6, 6′
141a 2, 2′, 3, 4, 5, 5′ 201a 2, 2′, 3, 3′, 4, 5′, 6, 6′
149 2, 2′, 3, 4′, 5′, 6 202a 2, 2′, 3, 3′, 5, 5′, 6, 6′
151 2, 2′, 3, 5, 5′, 6 203 2, 2′, 3, 4, 4′, 5, 5′, 6
154a 2, 2′, 4, 4′, 5, 6′ 205 2, 3, 3′, 4, 4′, 5, 5′, 6
156 2, 3, 3′, 4, 4′, 5 206 2, 2′, 3, 3′, 4, 4′, 5, 5′, 6
157 2, 3, 3′, 4, 4′, 5′ 207a 2, 2′, 3, 3′, 4, 4′, 5, 6, 6′
165 2, 3, 3′, 5, 5′, 6 208 2, 2′, 3, 3′, 4, 5, 5′, 6, 6′
166 2, 3, 4, 4′, 5, 6 209 2, 2′, 3, 3′, 4, 4′, 5, 5′, 6, 6′

a Prediction set.
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used for the generation of models and the prediction set was
used for the evaluation of the generated models. The pre-
diction sets were chosen randomly and consist of almost all
types of molecules included in the training sets and there-
fore, are good representatives of the training sets.

3.2. Descriptor generation

A total of 91 separate molecular structure descriptors
were calculated for each compound in the data sets. These
descriptors can be classified into four major groups: topo-
logical, geometric, electronic and physicochemical. Topo-
logical descriptors were calculated using two-dimensional
representation of the molecules. Geometric and electronic
descriptors depend on the three-dimensional coordinates of
atoms. Therefore, in order to calculate these types of de-
scriptors one needs to optimize molecular structure for each
compound. In the present work, three-dimensional structures
of the molecules were optimized using the self-consistence
molecular orbital method of AM1 (SCF-MO AM1) imple-
mented in the MOPAC package (version 6)[19]. The topo-
logical descriptors consist of constitutional and connectivity
indices. The calculations of the constitutional parameters
such as number of chlorine atoms in different positions were
straightforward. The connectivity indices based on Randic
method[20] were calculated using a FORTRAN 77 program
written in our laboratory. The boiling point of the com-
pounds was used as a physicochemical descriptor and was
taken from the literature. Some of the descriptors generated
for each compound encoded similar information about the
molecule of interest. Therefore, it was desirable to test each
descriptor and eliminate those, which show high correlation
(R > 0.95) with each other. A total of 21 out of the 91 de-
scriptors showed high correlation and were removed from
the consideration. Then, stepwise multiple linear regression
(MLR) method was used to build the linear models that re-

Table 2
Specifications of the selected multiple linear regression models

Descriptor Notation Coefficient Mean effect

Subset 1
Molecular ion ionization potential MIIP 6.1014 (±1.0059) 10.6165
Ratio of principle axes of rotation aboutx and z axes RPAR (yz) −0.0799 (±0.0120) 0.7378
Principle moment of inertia of the molecule aboutz axis Iz −9.6833E-4 (±2.5652E-4) −2.5150
Principle moment of inertia of the molecule aboutx axis Ix −5.1568E-4 (±2.1259E-4) −0.6563
Surface of the molecule onyz plane Syz −0.1110 (±0.0225) −4.6296
Constant −1.1752 (±1.0350)

Subset 2
4Xc Randic connectivity index RCI 0.6554 (±0.2425) 0.4194
Ionization potential of the molecule IP 1.2981 (±0.3830) 12.5654
Number of Cl atoms in biphenyl ring with lower number of Cl atom NOCL −0.1835 (±0.0887) −0.4900

Number of configuration
Cl Cl

in the molecule CONF 0.0770 (±0.0301) 0.2763
Moment of inertia of the molecule Ixz 2.5151E-4 (±9.5544E-4) −0.0250
Surface of the molecule onxy plane Sxy 0.0116 (±0.0092) 0.8270
Surface of the molecule onxz plane Sxz −0.0013 (±0.0212) −0.0774
Constant −12.7974 (±3.1156)

late the RRFs to the structural parameters (descriptors). Two
selected models for subsets 1 and 2 are presented inTable 2.

3.3. ANN generation

The ANN programs were written in FORTRAN 77 in our
laboratory. The networks were generated using the descrip-
tors appearing in the MLR models as inputs. A three-layer
network with a sigmoid transfer function was design for each
ANN. Before training the networks the input and output val-
ues were normalized between 0.1 and 0.9. The number of
nodes in the hidden layers, learning rate, and momentum
were optimized. The initial weights were selected randomly
between−0.3 and 0.3. As can be seen fromTable 2, the
MLR model for the subset 1 includes five and that of the
subset 2 includes seven descriptors, respectively. Therefore,
the number of input for subsets 1 and 2 were five and seven,
respectively. The number of nodes in the output layer for
both subsets was set to be one. In order to evaluate the per-
formance of the ANNs, the standard error of training (SET)
and the standard error of prediction (SEP) were used. All
calculations in this work were performed using a Pentium
4, 1.8 GHz PC with 256 M RAM.

4. Results and discussion

Table 2 shows the specifications of two selected MLR
models for subsets 1 and 2. The mean effect for each param-
eter is also included in this table. Inspection of the variables
appearing in the MLR models reveals that these parame-
ters encoded different aspects of the molecular structure and
properties. In ECD, tendency of a solute for capturing the
electrons determines the decreases in the electrical current
between the two electrodes that is registered as a response.
Two descriptors of molecular ion ionization potential (MIIP)
and ionization potential of the molecules (IP) have appeared
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Table 3
Architectures of the ANNs for subsets 1 and 2

Subset 1 Subset 2

Number of nodes in the input layer 5 7
Number of nodes in the hidden layer 5 6
Number of nodes in the output layer 1 1
Number of iteration in the beginning

of over-fitting
160000 29000

Learning rate 0.8 0.5
Momentum 0.9 0.9
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Fig. 1. A typical learning curve for ANN: (a) subset 1, (b) subset 2.

in the statistical models of the subsets 1 and 2. The param-
eter of MIIP is the ionization potential of the negative ion
form of the molecules. The differences between this param-
eter and the ionization potential of corresponding neutral
molecule can be considered as a measure of the affinity of
the molecules for capturing the electrons. The MIIP parame-
ter shows a high correlation with the mentioned differences.
Therefore, one may conclude that this parameter is related
to the tendency of the molecules for capturing the electrons.
The IP is based on the validity of the Koopmans theorem,
IP = −EHOMO. These parameters show very high mean ef-
fects with comparison to the other descriptors. The surfaces



M. Jalali-Heravi et al. / Journal of Chromatography A, 1023 (2004) 247–254 251

Table 4
Experimental and calculated values of the RRFs for the training and
prediction sets

PCB no. RRFexp RRFNNET RRFMLR

Subset 1a

1 0.025 0.028 0.042
3 0.011 0.000 1.625
4 0.044 0.211 0.116
7 0.919 0.786 0.999
8 0.537 0.705 0.699

13 0.102 0.052 0.165
15 0.102 0.107 0.597
16 0.828 0.492 1.177
17 0.671 0.851 1.181
19 0.358 0.360 0.054
22 1.312 1.280 −0.255
24 1.393 1.387 1.298
25 1.585 1.396 0.333
31 0.677 0.643 1.427
33 1.126 1.405 1.009
34 0.584 0.565 1.030
35 0.454 0.443 0.836
37 0.448 0.476 0.803
40 1.615 1.407 0.667
41 1.560 1.695 0.618
44 0.760 0.860 1.152
46 0.666 0.555 1.502
48 0.539 0.784 1.190
49 0.846 0.971 1.109
51 0.673 0.637 1.353
53 0.545 0.617 0.792
56 1.829 1.760 1.125
63 1.700 1.791 0.203
66 1.128 1.157 1.505
67 1.183 1.204 0.592
70 1.495 1.267 1.353
84 0.870 0.912 0.787
91 0.999 0.823 1.368
92 0.881 0.929 1.168
96 0.582 0.646 1.014
99 0.762 0.800 0.818

100 1.255 1.333 0.613
101 0.951 0.814 0.909
103 0.753 0.864 1.209
113 1.893 1.864 0.891
121 1.606 1.591 1.192

Prediction set 1
6 0.355 0.256 0.539

12 0.187 0.015 0.088
18 0.459 0.586 0.214
26 0.672 0.645 0.617
29 1.132 1.187 1.092
42 1.648 1.589 1.180
45 0.575 0.825 1.059
52 0.651 0.696 0.531
74 1.527 1.622 1.393
95 0.900 0.773 1.036

104 0.679 0.683 0.798

Subset 2
77 0.245 0.445 0.350
81 0.369 0.518 0.517
82 0.589 0.640 0.648
83 0.529 0.509 0.472
87 0.776 0.681 0.627

Table 4 (Continued )

PCB no. RRFexp RRFNNET RRFMLR

97 0.393 0.505 0.461
110 0.505 0.597 0.563
114 1.184 1.058 0.892
118 0.440 0.385 0.539
119 0.627 0.445 0.483
122 0.602 0.682 0.723
126 0.374 0.342 0.452
129 0.715 0.616 0.729
131 0.549 0.540 0.622
132 0.541 0.475 0.433
134 0.488 0.522 0.549
135 0.429 0.388 0.342
136 0.364 0.388 0.303
137 1.110 0.772 0.851
138 0.722 0.698 0.727
149 0.384 0.455 0.505
151 0.493 0.441 0.597
156 1.005 1.070 0.873
157 0.876 0.928 0.850
165 0.577 0.769 0.772
166 1.241 1.281 1.264
169 1.015 0.873 0.797
170 0.777 0.791 0.843
171 0.768 0.706 0.783
172 0.756 0.780 0.711
173 1.111 1.101 1.177
175 0.539 0.590 0.543
176 0.481 0.504 0.484
177 0.555 0.656 0.657
178 0.480 0.574 0.527
179 0.413 0.481 0.416
180 0.823 0.937 0.956
187 0.488 0.557 0.692
189 1.304 1.022 0.959
193 1.000 0.991 0.928
194 1.158 1.026 0.942
195 0.907 0.869 0.982
197 0.492 0.525 0.627
198 0.874 0.853 0.803
199 0.776 0.706 0.712
200 0.585 0.528 0.419
203 0.843 1.062 1.029
205 0.845 0.936 0.930
206 1.045 1.094 0.987
208 0.928 0.891 0.737
209 0.853 0.856 1.160

Prediction set 2
85 0.641 0.724 0.757

105 1.032 0.910 0.812
107 0.511 0.531 0.548
128 0.829 0.770 0.818
130 0.534 0.733 0.612
141 0.871 0.955 0.883
154 0.323 0.375 0.513
167 0.443 0.591 0.524
174 0.522 0.539 0.554
183 0.795 0.715 0.745
185 1.137 1.075 0.985
191 0.860 0.900 0.922
201 0.819 0.756 0.630
202 0.445 0.550 0.435
207 0.729 0.676 0.768

a Numbers are referred to the molecules given inTable 1.
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of the molecules onyz (Syz), xy (Sxy) andxz (Sxz) planes are
also appeared in the models of the subsets 1 and 2, respec-
tively. The values of these surfaces depend upon the number
of chlorine atoms of the PCBs. It can be seen fromTable 1
that subset 1 mainly consists of the PCB compounds with
less than five chlorine atoms, whereas the majority of the
molecules included in the subset 2 have more than five chlo-
rine atoms.Table 2shows that the contribution of Syz to the
relative response factor is negligible while Syz and Sxy show
a considerable contribution to the RRF of the molecules in-
cluded in the subsets 1 and 2, respectively. Inspection of the
variation of these surfaces shows that as the dihedral angle
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Fig. 2. Plots of the calculated vs. the experimental values of RRFs for the prediction sets. (a) ANN model, (b) MLR model.

Table 5
Statistical parameters obtained using the ANN and MLR models for RRFs

Model SET SEP Rtraining Rprediction Ftraining Fprediction

Subset 1
MLR 0.260 0.234 0.882 0.845 24 23
ANN 0.129 0.116 0.969 0.971 139 164

Subset 2
MLR 0.147 0.078 0.860 0.893 17 51
ANN 0.096 0.072 0.915 0.927 253 80



M. Jalali-Heravi et al. / Journal of Chromatography A, 1023 (2004) 247–254 253

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

RRF (Exp)

R
es

id
u

al

Fig. 3. Plot of residuals vs. the experimental values of RRFs for the prediction sets.

between the two rings of a PCB molecule decreases, Sxy in-
creases while Syz and Sxz decrease. The appearance of the
surface of the molecule parameters in the models indicates
that these surfaces play a major role in capturing the elec-
trons in ECD system. The contribution of Syz to the relative
response factor is negligible, whereas Syz and Sxy show a
considerable contribution to the molecules included in the
subsets 1 and 2, respectively. As the number of the chlo-
rine atoms increases, the Syz decreases and therefore, the
RRF decreases. On the other hand, as the number of chlo-
rine atoms increases, Sxy increase and therefore, the RRF
increases.

The main goal of the present study was generation of the
ANN for modeling of ECD RRFs. Before the training of
these networks, the parameters of the number of nodes in the
hidden layer, learning rate and momentum were optimized.
The procedure for the optimization of these parameters is re-
ported in[12,13,21]. The architectures and specifications of
the optimized ANN for ECD system are shown inTable 3. In
order to control overfitting of the networks during the train-
ing procedure, the SET and SEP values were recorded after
each 500 iterations (Fig. 1). Each 500 iterations take a few
seconds by using the Pentium 4, 1.8 GHz PC. In the case of
subset 1, after 160 000 iterations the values of SEP started to
increase and overtraining began and for subset 2 overtrain-
ing began after 29 000 iterations. For the evaluation of the
prediction ability of the ANNs, the trained ANNs were used
to predict the RRFs of the molecules included in the predic-
tion sets. The calculated values of RRFs using the generated
ANNs for the training and prediction sets are presented in
Table 4. The statistical parameters, such as correlation co-
efficient (R) between the calculated and experimental val-
ues of RRFs and standard errors (SEs) for the training and
prediction sets obtained using the ANNs and MLR models
are shown inTable 5. Inspection of SET and SEP values
for the ANNs and MLR methods reveal the superiority of
the neural networks over that of the MLR in predicting of
the RRFs. It is noteworthy that the descriptors appearing in

the MLR model were used as inputs for developing of the
neural networks. On the other hand, a subset of descriptors
was chosen from the reduced descriptor pool by a multiple
linear regression analysis. These descriptors were then sub-
mitted to a computational neural network to develop a non-
linear model. In fact the linear method of MLR was chosen
as a feature selection method for developing the nonlinear
model of ANN. However, the improvement in performance
of the ANN model means that it adapts to the descriptors
better by allowing for a degree of non-linearity. Therefore,
one may conclude that RRFs show nonlinear characteris-
tics. As can be seen fromTable 5, the values of the SET
and SEP are comparable for both subsets and one may con-
clude that the prediction sets are good representative of the
training sets.Fig. 2 shows the plot of the ANN and MLR
calculated values of RRFs against the experimental ones. In
order to demonstrate the absence of bias, zero intercept unit
slop line is also shown as a dashed-line inFig. 2afor the
ANN model.Fig. 2bshows similar plots for the MLR cal-
culated RRFs values. Comparison of zero intercept plots for
the MLR and ANN models indicates the superiority of the
ANN over that of the MLR model.Fig. 3 shows the plot of
residuals against the experimental values of RRFs for the
ANN models. The propagation of the residuals in both sides
of zero indicates that no systematic error exist in the devel-
opment of the ANNs.

5. Conclusions

Comparison of the values of the SET and SEP obtained us-
ing models of ANN and MLR for predicting of RRFs shows
superiority of the neural networks over that of linear regres-
sion models. Inspection of the statistical parameters (Table 5)
indicates that the use of the linear models in predicting of
RRFs of ECD detector is not justified. Since the improve-
ment of the results obtained using nonlinear models of ar-
tificial neural networks is considerable, one may conclude
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that the nonlinear characteristics of the RRFs are serious. In
the present work, ANN models were successfully developed
using five and seven descriptors as input for the 52 and 66
molecules of the subsets 1 and 2, respectively. Inspection of
the results reveals that the parameters relating to the affinity
of the molecules for electrons such as MIIP and IP of the
molecules play the major role in capturing the electrons in
ECD detection systems. In addition, the surface area of the
molecules and therefore, the position of chlorine atoms on
the rings is important in the responses of ECD to PCBs.
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